Structure of dihydrouridine synthase C (DusC) from Escherichia coli.
نویسندگان
چکیده
Dihydrouridine (D) is one of the most widely conserved tRNA modifications. Dihydrouridine synthase (Dus) is responsible for introducing D modifications into RNA by the reduction of uridine. Recently, a unique substrate-recognition mechanism using a small adapter molecule has been proposed for Thermus thermophilus Dus (TthDusC). To acquire insight regarding its substrate-recognition mechanism, the crystal structure of DusC from Escherichia coli (EcoDusC) was determined at 2.1 Å resolution. EcoDusC was shown to be composed of two domains: an N-terminal catalytic domain and a C-terminal tRNA-binding domain. An L-shaped electron density surrounded by highly conserved residues was found in the active site, as observed for TthDus. Structure comparison with TthDus indicated that the N-terminal region has a similar structure, whereas the C-terminal domain has marked differences in its relative orientation to the N-terminal domain as well as in its own structure. These observations suggested that Dus proteins adopt a common substrate-recognition mechanism using an adapter molecule, whereas the manner of tRNA binding is diverse.
منابع مشابه
Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases.
The reduction of specific uridines to dihydrouridine is one of the most common modifications in tRNA. Increased levels of the dihydrouridine modification are associated with cancer. Dihydrouridine synthases (Dus) from different subfamilies selectively reduce distinct uridines, located at spatially unique positions of folded tRNA, into dihydrouridine. Because the catalytic center of all Dus enzy...
متن کاملA novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene
Genomic islands play a key role in prokaryotic genome plasticity. Genomic islands integrate into chromosomal loci such as transfer RNA genes and protein coding genes, whilst retaining various cargo genes that potentially bestow novel functions on the host organism. A gene encoding a putative integrase was identified at a single site within the 5' end of the dusA gene in the genomes of over 200 ...
متن کاملEffect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains
CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...
متن کاملIdentification of Dihydrouridine in Escherichia Coli
The N3 imino units of dihydrouridine were identified in samples of I5N-Iabeled Escherichia coli tRNAret, tRNALy., and tRNAPhe by IH_15N two-dimensional NMR. The peaks for dihydrouridine had high field 1 H (9.7-9.8 ppm) and I5N (147.8-149.5 ppm) chemical shifts. Assignments were made by IH_IoN chemical shift correlation based on values obtained in model studies with tri-O-benzoyland tri-O-acetyl...
متن کاملUnveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario
Post-transcriptional base modifications are important to the maturation process of transfer RNAs (tRNAs). Certain modifications are abundant and present at several positions in tRNA as for example the dihydrouridine, a modified base found in the three domains of life. Even though the function of dihydrourine is not well understood, its high content in tRNAs from psychrophilic bacteria or cancer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section F, Structural biology and crystallization communications
دوره 69 Pt 8 شماره
صفحات -
تاریخ انتشار 2013